NACA TN 1906

\J

Fapad

Ao B

ENA -3

NATIONAL ADVISORY COMMITTEE
FOR AERONAUTICS

TECHNICAL NOTE 1906

AN ANALYTICAIL STUDY OF THE STEADY VERTICAL DESCENT IN
AUTOROTATION OF SINGLE-ROTOR HELICOPTERS
By A. A. Nikolsky and Edward Seckel

Princeton University

™y
| —
| —
| —
W =
1 —J
Reproduced From 'Washington —‘hu
Best Available Copy
| June 1949
. ) —
DISTRIBUTION STATEMENT A __\.D:J
Approved for Public Release
Distribution Unlimited |
DTIC QUALITY INGPECSED 4

Aom co-fo3345

K




NATTONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 1906

AN ANALYTTCAL STUDY OF THE STEADY VERTICAL DESCENT IN
AUTOROTATION OF SINGLE-ROTOR HELICOPTERS

By A. A. Nikolsky and Edward Seckel
SUMMARY

A detailed analysis of steady autorotative vertical descent of a
helicopter is made, in which the effect of considering induced velocity
constant over the disk 1s examined. The induced velocity is first
considered constant, then variable over the disk; and the results are
compared for a typical helicopter. Although considering the induced
velocity constant over the disk causes considerable error in the load
distribution along a blade, the revolutions per minute of the rotor and
rate of descent are found to be negligibly affected for small angles of
blade pitch. For high pitch angles, where blade stalling becomes
important, the theoretical difference between blade load distributions
obtained by considering induced velocity constant and variable may be
expected to be enough to cause quantitative disagreement between the
constant induced—velocity theory and experiment.

A brief study is made of the stability of autorotation, considering
the effect of blade stalling. At small values of blade incldence, .
stability of the autorotation will be adequate, and blade stalling can
be neglected. As the blade incidence increases, the risk of an upgust
causing the blades to stall and the rotor to stop becomes acute.

INTRODUCTION

This report 1s the result of the first part of a broad program to
analyze the transient motions of a helicopter, which occur in the various
phases of flight following power failure. As such, it is proper that it
be concerned with steady-state vertical flight without power, or steady

autorotative descent.

The basis for the analysis is contained in a paper by Glauert
(reference 1), although a somewhat similar approach was made by Bennett
in reference 2. There is no theory adequate to analyze the states of a
rotor in autorotative vertical descent, and recourse must be made to
an empirical relationship between the velocity of descent and total flow
through the rotor disk. As more experimental evidence becomes available,
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it will be possible to modify the necessary empiricisms to improve the
agreement between analysis and fact.

This work was conducted at Princeton University under the sponsor—
ship and with the financial assistance of the National Advisory Committee
for Aeronautics.

SYMBOLS

Physical Quantities

W gross welght, pounds
b number of blades per rotor
R blade radius, feet
r radial distance to blade element, feet
X = r/R
c blade-sectlon chord, feet
" PR
crédr
0
Ce equivalent blade chord, feet Cg = ————e
R
Jr redr
0]
Oy blade~section solidity ratio (E%
bCe
o rotor solidity ratio [—
R
2] blade—section pitch angle from zero 1lift, radians unless

otherwise stated

90 blade pitch angle at hub
91 linear twist of blade (9 =0g + elx)
8 disk area, square feet (ﬂRa)

o mass density of air, slugs per cubic foot
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©
Cdo

80:61:62:63

Alr—Flow Parameters

true airspeed of helicopter along flight path, feet
per second

vertical component of V (positive down)
rotor angular velocity, radians per second

induced inflow velocity at rotor (always positive),
feet per second

Vv -V _ UP
QR QR

inflow ratio at a blade element <

resultant velocity of the air relative to a blade
element, perpendicular to blade—span axis, feet
per second

component of U perpendicular to axis of no feathering
(positive up toward rotor)

blade—section angle of attack from zero 1lift, radians
unless otherwise stated

inflow ratio with induced veldcity assumed constant

over the disk (-%
R

average value of Up over disk (when induced velocity

is assumed constant over the disk), feet per second
(positive up)

Blade—Element Aerodynamic Characteristics
section 1ift coefficient
section profile—drag coefficient

coefficients in power series for Cd, as a function

of . (?do = By + Dyay, + Bpa2 + 63ar3 .. )

dq corrected to account for friction torque

60 corrected to account for friction torque
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increment in ®y to agcount for friction torque
(30" = 8o + AB)
where

Qr = — g b92R4(Abo)ng cx3ax

Ca,' = Bo' + 81ap + BpayP + B3ad + . L .

de
slope of 1lift curve for blade, per radian <EE%>

maximum section 1ift coefficient

blade station inboard of which blade is stalled

1ift coefficient of stalled blade.section

profile—drag coefficient of stalled blade section
section thrust coefficient based on resultant
velocity [ F = ————};7§G§§

section thrust coefficlent based on descending

velocity | £ = = ng)

4nrva2 dr

Rotor Aerodynamic Characteristics
rotor thrust, pounds

rotor aerodynamic torgue, pound-feet

rotor friction torque, pound—feet (may include torque

to drive auxiliary mechanisms)

rotor thrust coefficient (bT ———521——§>
TER~(OR)

rotor torque coefficient <CQ = ;;§§é%§sﬁ>
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F . rotor thrust coefficient based on resultant

velocity F = N
21rpR2u2

f rotor thrust coefficient based on descending
- T
velocity | £ = — 3
2stpR2Vv
Miscellaneous
K constant in empirical relation between f
and F (L=2+2gl
hig F
AACES
51 QR/ agyd
aoy
2"
_ 16K8
P3 = ao,
ag ach2 S
1
1 2
Ch = T b cOx“dx
1
Cop = 1 cx dx
37 cq
0
QCQ 2
C,+ = T 9]
1
05 = - _l.. cx3(80' + 819 + 5292)(‘11
e Jo
1 1 2
cg = acp — o cx=(8y + 2809)dx
0

c7 = c3(a - 82)
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2
Ch,C3,C2,Cl,CO coefficients in power series for —gg as a function

2¢
of A <—03 = Co + C1h + C2A2 + CqA3 + cpﬁ)

METHOD OF ANALYSIS

The Relation between

It was shown by Lock in reference 3 that, for small values of
resultant axial air velocity u through a rotor disk, the vortex and
momsntum thsories are inapplicable. A relationship between u and the
vertical component of descending velocity Vy was found experimentally

and presented in terms of nondimensional coefficients F and T by
Glauert in reference 1. The relation between F. and T given by
Glavert is given in figure 1 of this report (the solid line). The upper
branch of the curve is for the windmill brake state, u > 0 (in which
the rotor operates as a windmill, the average flow through the rotor being
in the direction of the free stream); the lower branch is for the vortex
ring state, u < 0 (in which the actual flow through the rotor is turbu—
lent, at some places being in the direction of the free stream, and at
some against. On the average, however, the flow through the rotor is
against the free stream).

In order to simplify the analytical treatment, and because there is
some doubt as to the exact relationship between f and F, it is assumed
in this report that the relationship is of the form

=2tx (1)

o [k
CIRE

which is illustrated in figure 1 for K = 1 and 2. The upper branches
(corresponding to the plus sign) are again for the windmill brake
state, u > 0; the lower (for the minus sign) are for the vortex ring
state, u < O.

In this report, K will usually be taken as 2, so that, in
hovering éé =0}, %}

f F
to be reasonably accurate in its application to hovering. The effect of

= 1, to agree with the vortex theory which is known

the different assumptions for -%;against{£~ on descending velocity in
f F

steady autorotation is presented in figure 2, for a sample helicopter
(see SAMPLE CALCULATIONS) with various blade incidences. It is seen
that the differences are not large.
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Derivation of the Equations
It is now assumed that the same relationship that exists between f
and F, for the rotor, exists as well betwsen the corresponding coeffi-
cients £ and F for any blade section, where, however, f and F arec
variable over the disk.

Considering now any blade section, from the definitions of f and T,

there can be written
2
F Vv

and combining equations (1) and (2),

. 2
°oF =1 F K@i) (3)

where, in equation (3) and hereafter, the upper sign corresponds to the

upper branch of % against % (the windmill brake state) and the lower

sign to the lower branch of % against % (the vortex ring state).

Substituting in equation (3) the definition of f, and, since only
vertical flight 1s concerned, dropplng the subscript v on Vg,

2 = eroc?(V 7 xug?) (4)

From blade—element considerations,

2

=

U
ar _ e abcx292R3(% + ;é%) (5)
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Combining with equation (4) and letting

1 QR/ ao.8
a.ox
P2 = Bx
(6)
_ 16Ko f
37 Tao,
Up
Ay = —
QR
J
there results, for the two states
2 4 opas T ol _
My £ 2PoAy * P2P3(PL —x) =0 (7)

For the windmill brake state, UP >0, Ay > 0, and the solution
nmust be

A = —pz[l ~ L p,(p; = x)] (8)

and it must be that x < Py-

For the vortex ring state, Uf < 0, Ay < 0, and the solution
nust be

My = PQ[; - Jl - P3(P1 - X)] (8a)

and it must be that x > pj.

It is apparent then, that blade elements inboard of station x = P
are in the windmill brake state where the upper branch of % against %
applies, and that blade elements outboard of station x

1

= p; are in the
vortex ring state, where the lower branch of 7 against % applies. At

station x = p1, Ay =Up = O.
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known:
1
W=T =2 bag R3 <? + §§> xCdx
X
0
and
R - S 1 Ax
Q—O—-e-bQR B.C<9+T))\,XX26_X—.

cx3<so + 810 + 5292>
cxzkx 51 + 2982> cﬁgxxx2dx

l _
; 1

in which the drag coefficient is represented by the series

- 2
Ca,' = B0 * 010y + D0y

The solution of these equations involves the determination, by

For steady autorotation, the thrust and forque equations are well

(9)

(10)

trial and error, of the ratio s% such that the computed distribution

of Ay (equations (8) and (8a)) satisfies the torque equation.

Solution with Variable Induced Velocity

Steps in the solution of equations (8), (9), and (10) are outlined

below:

(1) Assume a value for p

j%, or compute an approximate value

by assuming induced velocity constant over the dlSk by the method

given in the following section.

(2) Choose a number of stations, such as x = 0.2, 0.k, 0.6,
0.8, and 1.0, and calculate at each station the values of Py, Po,

and p; from equations (6).
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(3) Calculate Ay at each station, from equation (8)
where x < pp, or from equation (8a) where x > pq.

(4) Substitute the values of A, into equation (10) and
evaluate the integrals graphically or by Simpson's rule.
Equation (10) must be satisfied. If it is not, a different

value of 5;% should be assumed, and steps (1) through (&)

repeated until the torque is substantially zero. Starting with

the value of . from constant induced—velocity considerations

QR
will lead usually to an accurate determination of &%% for zero
torque in three trials. The final value of 8%- will usually be
between O and 10 percent larger than that for constant induced

velocity.

(5) Having found the value of g% for zero torque, by

trial and error in step (4), substitute the appropriate values
of Ay 1nto equation (9), and evaluate the integral graphically
or by Simpson's rule. Solve equation (9) for Q.

(6) From the value of g%- from step (4), and Q from

step (5), solve for the descending velocity V.

Solution with Induced Veloclty Assumed Constant over the Disk

If it is assumed that the induced velocity is constant over the
disk, then an approximate solution of the above equations can readily
be obtained analytically. In thils case Ay 1s a constant \; and the
thrust and torque equations can be written

oy = 82(cp + o) (11)
and.
c) = 92<%5 +ceh + c7x2> (12)
where
2Cp o 2 /T )
°1 T a5 &= apR§c<é> (13)
1

co ék- cOxdx (13a)
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1 .
-4 v
°3 =5 cx dx » (13b)
0
ZCQ 5 '
o =5 @ (13¢)
1
Cg == Q% cx3<éo' + 8,6 + 350 )dx (134)
0
1
C, = acn — L 2(5, + 25,0 )dx
€ 2 = 2 51 20 (13e)
0
Cq = c3<a - 62> | (13f)

In steady autorotation, the torque equals zero <04 = O), so that

equation (12) reduces to

ep? 4 cgr + o5 = 0 (14)

Since, with induced velocity constant, it must be assumed that the
rotor is in the windmill brake state (A > 0), the solution must be

—g + Jeg? — keser (1ka)

207

A =

The following sequence may then be set down for solving the problem
under ths assumption of constant induced velocity:

(1) Calculate the coefficients ¢y, cp, ¢35 )5 Cgs Cgs
and cy from equations (13) through (13f)

(2) Calculate A from equation (1lha)

(3) Calculate @ from equation (11)
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(4) Calculate u from the definition of A (u = A(R)

(5) Calculate F from its definition (F = —ZL —
2npR2u2

(6) Calculate T from equation (1), using the plus sign
(for the windmill brake state)

(7) From the definition of Ff, calculate V <V = —T-—_
\ 20R2E

Stability of Autorotation

Blade element.— Considering, for the moment, the stability of a

solitary blade element in autorotative vertical descent, the autorotation
will be said to be stable, if, following a disturbance from the equilib-
rium condition of torque equal to zero, the blade element tends to
return to the same equilibrium state. If the disturbance made thes torque
decelerating, say, then

(1) @ would decrease
(2) AT and v would decrease
(3) V would increase
(4) Hence 1y, would increase

If the slope of dQ against Ay, é%%@l’ were positive (torque becoming
X

more autorotative for an increase in Ay), then the equilibrium (dqQ = 0)
would tend to be restored, and the autorotation would be stable.

o(4Q)
d

X

Conversely, if < 0, the autorotation would be unstable.

~ Rotor.— The criterion for the stability of the rotor as a whole,
by extension of that for the blade element, is

la%}Q_

Ohy

dx > 0

Although the evaluation of the above integral is prohibitively
difficult considering variable induced velocity, under the assumption
of constant induced velocity over the disk, it reduces to

)

— >0
oA
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It may be noted that for A = 0, the torque would be negative
(decelerating) for any pitch 8, so that, at the first trim point (Q = 0)
on a curve of @ against A, g% .mst be positive. Therefore, for infin—
itesimal disturbances from this trim condition, the autorotation would
be stable. As A increases, however, beyond the first trim point, the
angle of attack of the blades increases, until the blades stall, and the
curve of Q against A drops sharply through a second trim point

where 8i-< 0, and where the autorotation would be unstable.

Above a critical value of blade incidence the curve for Q against A
does not intersect the Q = 0 axis. Hence in this case there is no trim
point, and no autorotation is possible.

Below the critical blade angle, where both trim points exist, auto—
rotation can only be steady at the first, stable trim point. The slightest
disturbance from the unstable trim state would either cause the rotor to
revert to the flrst, stable trim state, or stop autorotating completely.

If the momentary increase in A, due to an upgust hitting a rotor
in stable autorotation at the first trim point, were sufficient to
increase A Dbeyond the second trim point, the autorotation would stop.
If the increase in A were less than the difference in the two trim
points, then the autorotation would return to the steady stable state

at the first trim point.

In order to investigate the critical blade angle above which auto—
rotation is impossible, and, for those blade angles where steady auto—
rotation can exist, to predict the value of an upgust which would cause
the autorotation to stop, it is necessary to include the effect of blade
stalling in the expressions for drag and 1ift coefficients as functions
of angle of attack. For this purpose, it is assumed that, below the
stall, the drag coefficient is given by a cubic in angle of attack,
instead of the usual quadratic, and that, above the stall, the drag and
1ift coefficients are constant at values denoted by Cds and CZS’

respectively. Thus, below the stall,
Cdo' = %' + Oqop + 52%2 + 53(1,1,3 (15)

The blade station at which the stall begins is denoted xg, and is
given by

cy = a<? + lL) | (16)

max Xg
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or

A
X =

® Clgay — 0 (16a)
a

For blades of constant chord, the torque equation is

1.0
2C
8. axx2<9 + §>dx +
g X
Xs
Xg
Cz XXed.X —
S
0
1.0
3|t A IAS )3
X [%O + 51<é + x>-+ 62<e + x> + 63 e + X dx —
Xs
Xg
Bx3ax (17)
0

As written above, the equation applies for 0< Xg < 1.0, which
1s the range of interest here. For @ = Constant (no twist), integrating
equation (17) and substituting from equation (16a),

2C
——0-9- = CM“ + C3x3 + nge + CiA + Cp (18)
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where
c, = = - [(50' —85) + 516 + 8p6° + 5393] +
h(clmax
— — 0
1 (81 + CZS) + (262 - a)@ + 38362] +
(sz )3 L
3 —
a
1 ¥ 03
B ~— 8 _
o 2‘(2 a)+339]+ o
2( max _ ) ( max _ 9)
a a
03 = B3
02 = %(a — 62 hand 3839>
1 _ 2
c, = 3 [’51 + (a - 252)9 3840 ]
Co = — %(50' + 8.8 + 5292 + 6393>

o
The values of A for @Q = O, and the slope, 5%, at those trim
2¢
points can best be investigated by calculating and plotting —Eg as a

function of A for various values of 0.
SAMPLE CALCULATIONS

The physical properties for the helicopter chosen for the sample
calculations are as follows:

W

1]

2700 pounds

b =3

15
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d
1]

20 feet

¢ = 1.25 feet (constant) = cg

5.6 per radian

a

cg, = 0.0087 — 0.0216ay. + 0.h0Oay?

Variable Induced Velocity

For illustrative purposes, a linear twist of —6° is chosen
with 8 7sg = 4°, so that, in degrees,

or, in radians,
v
A vdlue of -—> of 0.0750 is assumed.
(ﬂR Q=0 2

Performing steps (1) through (3) in the section entitled "Solution
with Variable Induced Velocity,"™ the variation of Ay with x is

computed. For example, for x = 0.6, by equations (6),

p; = 0.788
Py = 0.0209
p3 = 8-20

Since x < p;, using equation (8),
Ax = 0.012h

Graphical integration of equation (10), using the variation of Ay
computed, gives a net area for @ very nearly zero. Therefore the value
of <5L> 1s sufficiently accurate.

QRQ=0

Graphical integration of equation (9) gives

.
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whence Q = 20.9 radians per second. Then

vV = <5v§>QR = 31.3 feet per second

At blade station x = 0.6, the blade angle of attack is

A
ap = 0 + = = 8.5 - 6(0.6) + X8 573 6.1°
Constant Induced Velocity

For the same pitch and linear twlst, using equations (13)
through (13f),

¢, = 13.50 c5 = -0.00226
ey = 0.0233 cg = 0.1190
(33 = 0.50 C7 =2.60

From equation (1lka),
A = 0.0145

From equation (11),

8 = 21.0 radians per second
u = AQR= 6.09 feet per second
- T
F=r——p=122
2xpR-u'

From equation (1), using the plus sign and K = 2,

2.16

rol| -
f

whence

vV = T = 31.2 feet per second

2:rpR2f

17
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At blade station x = 0.6, the angle of attack is

0.0145

= 6.3°
0.6 3

@, = e+—-85—6(06)+573

X

Stability of Autorotation

For this calculation the cubic drag polar is assumed,
cg,' = 0-0087 + 0.0600a; — 1.28,° + 8.0a,3

corresponding to

8,' = 0.0087
81 = 0.0600
62 = —1.28
33 = 8.00

Values pertinent to stalling are taken to be

CZ = 1.20
max

cZS = 0.60

5. = 0.250

Values of the coefficients Cy» C3, Co, Cy, and Cp are computed
ECQ

for various values of 60, and the variation of - with A 1s computed.

Although these calculations are not given in detail, the resg%ts are
presented in figure 3. The dashed lines are the curves of —Eg against A
computed by equation (12) in which blade stalling is neglected. They

are shown to indicate the effects of blade stalling, and to indicate the
ranges of A and 6 vwhere blade stalling may be neglected.
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DISCUSSION OF CALCULATTIONS

Comparison of Variable and Constant Induced—Velocity Theories

Calculations for rate of descent V and rotor speed Q for the
sample helicopter (see SAMPLE CALCULATIONS) have been carried out for
different amounts of blade twist, by both constant and variable induced—
velocity methods. The results, shown in figure 4, indicate that, for
performance calculations, the results by the two methods are practically
indistinguishable.

The variations of angle of attack along the blade, as computed for
the above cases by the two methods, are plotted in figure 5. Although
the agreement is good for negative twist, 1t is clear that the theoretical
blade load distribution is, in general, considerably affected by the
assumption of constant induced velocity.

Stability of Autorotation

2C

The variation of —Eg against A for various values of @, for the
sample helicopter, is given in figure 3. The blade drag polar used for
these calculations is compared with the quadratic expression (used in
the other calculations) in figure 6. It will be noted that the two are
essentially identical at low 1lift coefficients, but that at higher 1ift
coefficients a more realistic increase in drag is given by the cubic
expression used. Also, the stall is considered.

Consideration of figure 3 shows that for small blade incldence,
the second, unstable trim point is far enough from the stable one that
even a strong upgust would not cause A to increase beyond it. At
high values of incidence, however, the two trim points are so close
together that a rotor in stable autorotation at the first point might
become unstable, and stop autorotation, if hit by even a weak upgust,
with its attendant momentary increase of .

There is, of course, a value of 6 (about 8.8°, from the fig.)
above which there is no trim point, and therefore autorotation is not
possible. It is worth noting that using the quadratic drag polar, in
which stall is neglected, not only results in failure to predict the
second, unstable trim point and its attendant danger at high values
of 8, but would also indicate that autorotation would be possible at
any value of 6. It is apparent, then, that the blade stall cannot be

neglected at high incidence.

In figure 7, values of A for the first trim points are plotted
against 6, as read from the curves of figure 3. For comparison, values
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of A computed by the method given in the section entitled "Solution
with Tnduced Velocity Assumed Constant over the Disk," using the quad-—
ratic drag polar and neglecting the stall, are also shown. For small
values of @, the difference is very slight, indicating that blade
stalling can safely be neglected for performance calculations at low
incidence.

It should be noted that the results obtained from the study of
stability of autorotation should be considered purely qualitative. The
most important reason is that the constant induced—velocity theory used
fails to predict accurately the angle—of—attack distribution along the
blade, and hence cannot accurately account for the all—important distri—
butlion of stall at high angles of incidence where the stability is
guestionable. To be confident of quantitative results it would first be
necessary, therefore, to predict accurately the actual induced—velocity
distribution. It would also be necessary to represent accurately the
drag curve at angles above the stall, and to account for Reynolds number
effect on drag and maximum 1ift at various blade stations.

CONCLUSIONS

Although they are somewhat limited by the assumptions used in the
theory on which they are based, the following conclusions seem Justified:

1. Rate of descent and rotor speed are not critically affected by
different assumptions for rotor thrust coefficient based on descending
velocity f against rotor thrust coefficient based on resultant
velocity F in the range of conditions encountered in steady autorotative
descent.

2. For the computation of rate of descent and rotor speed, constant
induced—velocity theory may be used at low incidence where stalling may
be neglected. At high incidences, blade stalling must be accounted for
in order to obtain even qualitative agreement between theory and practice.
For quantitative agreement in this case, it would probably be necessary
to use a variable induced—velocity theory.

3. At high values of incidence, although the autorotation may be
stable for infinitesimal disturbances, a finite disturbance such as an
upgust might well stall enough of the blades to put the rotor in an
unstable regime where it would cease autorotating. There is little danger
of this, at least for aerodynamically clean blades, at low incidence.

4. For the sample design studied, the constant induced—velocity
theory, accounting for blade stalling, indicates a critical value of
blade incidence of about 8.8°, above which steady autorotation would not
be possible.

Princeton University
Princeton, N. J., May L4, 1948
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